Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Logic-based AI for Interpretable Board Game Winner Prediction with Tsetlin Machine (2203.04378v1)

Published 8 Mar 2022 in cs.AI and cs.LG

Abstract: Hex is a turn-based two-player connection game with a high branching factor, making the game arbitrarily complex with increasing board sizes. As such, top-performing algorithms for playing Hex rely on accurate evaluation of board positions using neural networks. However, the limited interpretability of neural networks is problematic when the user wants to understand the reasoning behind the predictions made. In this paper, we propose to use propositional logic expressions to describe winning and losing board game positions, facilitating precise visual interpretation. We employ a Tsetlin Machine (TM) to learn these expressions from previously played games, describing where pieces must be located or not located for a board position to be strong. Extensive experiments on $6\times6$ boards compare our TM-based solution with popular machine learning algorithms like XGBoost, InterpretML, decision trees, and neural networks, considering various board configurations with $2$ to $22$ moves played. On average, the TM testing accuracy is $92.1\%$, outperforming all the other evaluated algorithms. We further demonstrate the global interpretation of the logical expressions and map them down to particular board game configurations to investigate local interpretability. We believe the resulting interpretability establishes building blocks for accurate assistive AI and human-AI collaboration, also for more complex prediction tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.