Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Data Splitting Scheme for Federated Edge Learning in IoT Networks (2203.04376v1)

Published 8 Mar 2022 in cs.NI

Abstract: Federated Edge Learning (FEEL) is a promising distributed learning technique that aims to train a shared global model while reducing communication costs and promoting users' privacy. However, the training process might significantly occupy a long time due to the nature of the used data for training, which leads to higher energy consumption and therefore impacts the model convergence. To tackle this issue, we propose a data-driven federated edge learning scheme that tends to select suitable participating nodes based on quality data and energy. First, we design an unsupervised data-aware splitting scheme that partitions the node's local data into diverse samples used for training. We incorporate a similarity index to select quality data that enhances the training performance. Then, we propose a heuristic participating nodes selection scheme to minimize the communication and computation energy consumption, as well as the amount of communication rounds. The obtained results show that the proposed scheme substantially outperforms the vanilla FEEL in terms of energy consumption and the number of communication rounds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.