New Coresets for Projective Clustering and Applications (2203.04370v1)
Abstract: $(j,k)$-projective clustering is the natural generalization of the family of $k$-clustering and $j$-subspace clustering problems. Given a set of points $P$ in $\mathbb{R}d$, the goal is to find $k$ flats of dimension $j$, i.e., affine subspaces, that best fit $P$ under a given distance measure. In this paper, we propose the first algorithm that returns an $L_\infty$ coreset of size polynomial in $d$. Moreover, we give the first strong coreset construction for general $M$-estimator regression. Specifically, we show that our construction provides efficient coreset constructions for Cauchy, Welsch, Huber, Geman-McClure, Tukey, $L_1-L_2$, and Fair regression, as well as general concave and power-bounded loss functions. Finally, we provide experimental results based on real-world datasets, showing the efficacy of our approach.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.