Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ProxMaP: Proximal Occupancy Map Prediction for Efficient Indoor Robot Navigation (2203.04177v3)

Published 8 Mar 2022 in cs.RO

Abstract: Planning a path for a mobile robot typically requires building a map (e.g., an occupancy grid) of the environment as the robot moves around. While navigating in an unknown environment, the map built by the robot online may have many as-yet-unknown regions. A conservative planner may avoid such regions taking a longer time to navigate to the goal. Instead, if a robot is able to correctly predict the occupancy in the occluded regions, the robot may navigate efficiently. We present a self-supervised occupancy prediction technique, ProxMaP, to predict the occupancy within the proximity of the robot to enable faster navigation. We show that ProxMaP generalizes well across realistic and real domains, and improves the robot navigation efficiency in simulation by 12.40% against a traditional navigation method. We share our findings and code at https://raaslab.org/projects/ProxMaP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.