Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Quantification of Occlusion Handling Capability of a 3D Human Pose Estimation Framework (2203.04113v1)

Published 8 Mar 2022 in cs.CV

Abstract: 3D human pose estimation using monocular images is an important yet challenging task. Existing 3D pose detection methods exhibit excellent performance under normal conditions however their performance may degrade due to occlusion. Recently some occlusion aware methods have also been proposed, however, the occlusion handling capability of these networks has not yet been thoroughly investigated. In the current work, we propose an occlusion-guided 3D human pose estimation framework and quantify its occlusion handling capability by using different protocols. The proposed method estimates more accurate 3D human poses using 2D skeletons with missing joints as input. Missing joints are handled by introducing occlusion guidance that provides extra information about the absence or presence of a joint. Temporal information has also been exploited to better estimate the missing joints. A large number of experiments are performed for the quantification of occlusion handling capability of the proposed method on three publicly available datasets in various settings including random missing joints, fixed body parts missing, and complete frames missing, using mean per joint position error criterion. In addition to that, the quality of the predicted 3D poses is also evaluated using action classification performance as a criterion. 3D poses estimated by the proposed method achieved significantly improved action recognition performance in the presence of missing joints. Our experiments demonstrate the effectiveness of the proposed framework for handling the missing joints as well as quantification of the occlusion handling capability of the deep neural networks.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com