Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dynamic Dual Trainable Bounds for Ultra-low Precision Super-Resolution Networks (2203.03844v3)

Published 8 Mar 2022 in eess.IV and cs.CV

Abstract: Light-weight super-resolution (SR) models have received considerable attention for their serviceability in mobile devices. Many efforts employ network quantization to compress SR models. However, these methods suffer from severe performance degradation when quantizing the SR models to ultra-low precision (e.g., 2-bit and 3-bit) with the low-cost layer-wise quantizer. In this paper, we identify that the performance drop comes from the contradiction between the layer-wise symmetric quantizer and the highly asymmetric activation distribution in SR models. This discrepancy leads to either a waste on the quantization levels or detail loss in reconstructed images. Therefore, we propose a novel activation quantizer, referred to as Dynamic Dual Trainable Bounds (DDTB), to accommodate the asymmetry of the activations. Specifically, DDTB innovates in: 1) A layer-wise quantizer with trainable upper and lower bounds to tackle the highly asymmetric activations. 2) A dynamic gate controller to adaptively adjust the upper and lower bounds at runtime to overcome the drastically varying activation ranges over different samples.To reduce the extra overhead, the dynamic gate controller is quantized to 2-bit and applied to only part of the SR networks according to the introduced dynamic intensity. Extensive experiments demonstrate that our DDTB exhibits significant performance improvements in ultra-low precision. For example, our DDTB achieves a 0.70dB PSNR increase on Urban100 benchmark when quantizing EDSR to 2-bit and scaling up output images to x4. Code is at \url{https://github.com/zysxmu/DDTB}.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube