Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Semantic-Preserving Linguistic Steganography by Pivot Translation and Semantic-Aware Bins Coding (2203.03795v1)

Published 8 Mar 2022 in cs.CR and cs.CL

Abstract: Linguistic steganography (LS) aims to embed secret information into a highly encoded text for covert communication. It can be roughly divided to two main categories, i.e., modification based LS (MLS) and generation based LS (GLS). Unlike MLS that hides secret data by slightly modifying a given text without impairing the meaning of the text, GLS uses a trained LLM to directly generate a text carrying secret data. A common disadvantage for MLS methods is that the embedding payload is very low, whose return is well preserving the semantic quality of the text. In contrast, GLS allows the data hider to embed a high payload, which has to pay the high price of uncontrollable semantics. In this paper, we propose a novel LS method to modify a given text by pivoting it between two different languages and embed secret data by applying a GLS-like information encoding strategy. Our purpose is to alter the expression of the given text, enabling a high payload to be embedded while keeping the semantic information unchanged. Experimental results have shown that the proposed work not only achieves a high embedding payload, but also shows superior performance in maintaining the semantic consistency and resisting linguistic steganalysis.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube