Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Aggregate Queries on Knowledge Graphs: Fast Approximation with Semantic-aware Sampling (2203.03792v2)

Published 8 Mar 2022 in cs.DB

Abstract: A knowledge graph (KG) manages large-scale and real-world facts as a big graph in a schema-flexible manner. Aggregate query is a fundamental query over KGs, e.g., "what is the average price of cars produced in Germany?". Despite its importance, answering aggregate queries on KGs has received little attention in the literature. Aggregate queries can be supported based on factoid queries, e.g., "find all cars produced in Germany", by applying an additional aggregate operation on factoid queries' answers. However, this straightforward method is challenging because both the accuracy and efficiency of factoid query processing will seriously impact the performance of aggregate queries. In this paper, we propose a "sampling-estimation" model to answer aggregate queries over KGs, which is the first work to provide an approximate aggregate result with an effective accuracy guarantee, and without relying on factoid queries. Specifically, we first present a semantic-aware sampling to collect a high-quality random sample through a random walk based on knowledge graph embedding. Then, we propose unbiased estimators for COUNT, SUM, and a consistent estimator for AVG to compute the approximate aggregate results based on the random sample, with an accuracy guarantee in the form of confidence interval. We extend our approach to support iterative improvement of accuracy, and more complex queries with filter, GROUP-BY, and different graph shapes, e.g., chain, cycle, star, flower. Extensive experiments over real-world KGs demonstrate the effectiveness and efficiency of our approach.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.