Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On observability and optimal gain design for distributed linear filtering and prediction (2203.03521v1)

Published 7 Mar 2022 in eess.SY, cs.IT, cs.LG, cs.SY, and math.IT

Abstract: This paper presents a new approach to distributed linear filtering and prediction. The problem under consideration consists of a random dynamical system observed by a multi-agent network of sensors where the network is sparse. Inspired by the consensus+innovations type of distributed estimation approaches, this paper proposes a novel algorithm that fuses the concepts of consensus and innovations. The paper introduces a definition of distributed observability, required by the proposed algorithm, which is a weaker assumption than that of global observability and connected network assumptions combined together. Following first principles, the optimal gain matrices are designed such that the mean-squared error of estimation is minimized at each agent and the distributed version of the algebraic Riccati equation is derived for computing the gains.

Citations (1)

Summary

We haven't generated a summary for this paper yet.