Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Weakly Supervised Learning of Keypoints for 6D Object Pose Estimation (2203.03498v1)

Published 7 Mar 2022 in cs.CV

Abstract: State-of-the-art approaches for 6D object pose estimation require large amounts of labeled data to train the deep networks. However, the acquisition of 6D object pose annotations is tedious and labor-intensive in large quantity. To alleviate this problem, we propose a weakly supervised 6D object pose estimation approach based on 2D keypoint detection. Our method trains only on image pairs with known relative transformations between their viewpoints. Specifically, we assign a set of arbitrarily chosen 3D keypoints to represent each unknown target 3D object and learn a network to detect their 2D projections that comply with the relative camera viewpoints. During inference, our network first infers the 2D keypoints from the query image and a given labeled reference image. We then use these 2D keypoints and the arbitrarily chosen 3D keypoints retained from training to infer the 6D object pose. Extensive experiments demonstrate that our approach achieves comparable performance with state-of-the-art fully supervised approaches.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)