Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Water and Sediment Analyse Using Predictive Models (2203.03422v1)

Published 4 Mar 2022 in cs.LG, cs.NA, and math.NA

Abstract: The increasing prevalence of marine pollution during the past few decades motivated recent research to help ease the situation. Typical water quality assessment requires continuous monitoring of water and sediments at remote locations with labour intensive laboratory tests to determine the degree of pollution. We propose an automated framework where we formalise a predictive model using Machine Learning to infer the water quality and level of pollution using collected water and sediments samples. One commonly encountered difficulty performing statistical analysis with water and sediment is the limited amount of data samples and incomplete dataset due to the sparsity of sample collection location. To this end, we performed extensive investigation on various data imputation methods' performance in water and sediment datasets with various data missing rates. Empirically, we show that our best model archives an accuracy of 75% after accounting for 57% of missing data. Experimentally, we show that our model would assist in assessing water quality screening based on possibly incomplete real-world data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.