Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Policy Generation in Multi-Agent Systems via Hypergraph Neural Network (2203.03265v2)

Published 7 Mar 2022 in cs.AI and cs.MA

Abstract: The application of deep reinforcement learning in multi-agent systems introduces extra challenges. In a scenario with numerous agents, one of the most important concerns currently being addressed is how to develop sufficient collaboration between diverse agents. To address this problem, we consider the form of agent interaction based on neighborhood and propose a multi-agent reinforcement learning (MARL) algorithm based on the actor-critic method, which can adaptively construct the hypergraph structure representing the agent interaction and further implement effective information extraction and representation learning through hypergraph convolution networks, leading to effective cooperation. Based on different hypergraph generation methods, we present two variants: Actor Hypergraph Convolutional Critic Network (HGAC) and Actor Attention Hypergraph Critic Network (ATT-HGAC). Experiments with different settings demonstrate the advantages of our approach over other existing methods.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.