Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Input-Tuning: Adapting Unfamiliar Inputs to Frozen Pretrained Models (2203.03131v1)

Published 7 Mar 2022 in cs.CL and cs.AI

Abstract: Recently the prompt-tuning paradigm has attracted significant attention. By only tuning continuous prompts with a frozen pre-trained LLM (PLM), prompt-tuning takes a step towards deploying a shared frozen PLM to serve numerous downstream tasks. Although prompt-tuning shows good performance on certain natural language understanding (NLU) tasks, its effectiveness on natural language generation (NLG) tasks is still under-explored. In this paper, we argue that one of the factors hindering the development of prompt-tuning on NLG tasks is the unfamiliar inputs (i.e., inputs are linguistically different from the pretraining corpus). For example, our preliminary exploration reveals a large performance gap between prompt-tuning and fine-tuning when unfamiliar inputs occur frequently in NLG tasks. This motivates us to propose input-tuning, which fine-tunes both the continuous prompts and the input representations, leading to a more effective way to adapt unfamiliar inputs to frozen PLMs. Our proposed input-tuning is conceptually simple and empirically powerful. Experimental results on seven NLG tasks demonstrate that input-tuning is significantly and consistently better than prompt-tuning. Furthermore, on three of these tasks, input-tuning can achieve a comparable or even better performance than fine-tuning.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube