Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Feeding What You Need by Understanding What You Learned (2203.02753v1)

Published 5 Mar 2022 in cs.CL

Abstract: Machine Reading Comprehension (MRC) reveals the ability to understand a given text passage and answer questions based on it. Existing research works in MRC rely heavily on large-size models and corpus to improve the performance evaluated by metrics such as Exact Match ($EM$) and $F_1$. However, such a paradigm lacks sufficient interpretation to model capability and can not efficiently train a model with a large corpus. In this paper, we argue that a deep understanding of model capabilities and data properties can help us feed a model with appropriate training data based on its learning status. Specifically, we design an MRC capability assessment framework that assesses model capabilities in an explainable and multi-dimensional manner. Based on it, we further uncover and disentangle the connections between various data properties and model performance. Finally, to verify the effectiveness of the proposed MRC capability assessment framework, we incorporate it into a curriculum learning pipeline and devise a Capability Boundary Breakthrough Curriculum (CBBC) strategy, which performs a model capability-based training to maximize the data value and improve training efficiency. Extensive experiments demonstrate that our approach significantly improves performance, achieving up to an 11.22% / 8.71% improvement of $EM$ / $F_1$ on MRC tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.