Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Efficient and Scalable Sharpness-Aware Minimization (2203.02714v1)

Published 5 Mar 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Recently, Sharpness-Aware Minimization (SAM), which connects the geometry of the loss landscape and generalization, has demonstrated significant performance boosts on training large-scale models such as vision transformers. However, the update rule of SAM requires two sequential (non-parallelizable) gradient computations at each step, which can double the computational overhead. In this paper, we propose a novel algorithm LookSAM - that only periodically calculates the inner gradient ascent, to significantly reduce the additional training cost of SAM. The empirical results illustrate that LookSAM achieves similar accuracy gains to SAM while being tremendously faster - it enjoys comparable computational complexity with first-order optimizers such as SGD or Adam. To further evaluate the performance and scalability of LookSAM, we incorporate a layer-wise modification and perform experiments in the large-batch training scenario, which is more prone to converge to sharp local minima. We are the first to successfully scale up the batch size when training Vision Transformers (ViTs). With a 64k batch size, we are able to train ViTs from scratch in minutes while maintaining competitive performance.

Citations (110)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.