Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Label Proportions by Learning with Label Noise (2203.02496v2)

Published 4 Mar 2022 in cs.LG

Abstract: Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags, and the label proportions within each bag are observed instead of the instance-level labels. The task is to learn a classifier to predict the individual labels of future individual instances. Prior work on LLP for multi-class data has yet to develop a theoretically grounded algorithm. In this work, we provide a theoretically grounded approach to LLP based on a reduction to learning with label noise, using the forward correction (FC) loss of \citet{Patrini2017MakingDN}. We establish an excess risk bound and generalization error analysis for our approach, while also extending the theory of the FC loss which may be of independent interest. Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures, compared to the leading existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jianxin Zhang (11 papers)
  2. Yutong Wang (50 papers)
  3. Clayton Scott (39 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.