Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 148 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Low-order preconditioning for the high-order finite element de Rham complex (2203.02465v1)

Published 4 Mar 2022 in math.NA and cs.NA

Abstract: In this paper we present a unified framework for constructing spectrally equivalent low-order-refined discretizations for the high-order finite element de Rham complex. This theory covers diffusion problems in $H1$, $H({\rm curl})$, and $H({\rm div})$, and is based on combining a low-order discretization posed on a refined mesh with a high-order basis for N\'ed\'elec and Raviart-Thomas elements that makes use of the concept of polynomial histopolation (polynomial fitting using prescribed mean values over certain regions). This spectral equivalence, coupled with algebraic multigrid methods constructed using the low-order discretization, results in highly scalable matrix-free preconditioners for high-order finite element problems in the full de Rham complex. Additionally, a new lowest-order (piecewise constant) preconditioner is developed for high-order interior penalty discontinuous Galerkin (DG) discretizations, for which spectral equivalence results and convergence proofs for algebraic multigrid methods are provided. In all cases, the spectral equivalence results are independent of polynomial degree and mesh size; for DG methods, they are also independent of the penalty parameter. These new solvers are flexible and easy to use; any "black-box" preconditioner for low-order problems can be used to create an effective and efficient preconditioner for the corresponding high-order problem. A number of numerical experiments are presented, based on an implmentation in the finite element library MFEM. The theoretical properties of these preconditioners are corroborated, and the flexibility and scalability of the method are demonstrated on a range of challenging three-dimensional problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.