Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ViT-P: Rethinking Data-efficient Vision Transformers from Locality (2203.02358v1)

Published 4 Mar 2022 in cs.CV

Abstract: Recent advances of Transformers have brought new trust to computer vision tasks. However, on small dataset, Transformers is hard to train and has lower performance than convolutional neural networks. We make vision transformers as data-efficient as convolutional neural networks by introducing multi-focal attention bias. Inspired by the attention distance in a well-trained ViT, we constrain the self-attention of ViT to have multi-scale localized receptive field. The size of receptive field is adaptable during training so that optimal configuration can be learned. We provide empirical evidence that proper constrain of receptive field can reduce the amount of training data for vision transformers. On Cifar100, our ViT-P Base model achieves the state-of-the-art accuracy (83.16%) trained from scratch. We also perform analysis on ImageNet to show our method does not lose accuracy on large data sets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.