Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Benchmarking Quantum(-inspired) Annealing Hardware on Practical Use Cases (2203.02325v2)

Published 4 Mar 2022 in quant-ph and cs.ET

Abstract: Quantum(-inspired) annealers show promise in solving combinatorial optimisation problems in practice. There has been extensive researches demonstrating the utility of D-Wave quantum annealer and quantum-inspired annealer, i.e., Fujitsu Digital Annealer on various applications, but few works are comparing these platforms. In this paper, we benchmark quantum(-inspired) annealers with three combinatorial optimisation problems ranging from generic scientific problems to complex problems in practical use. In the case where the problem size goes beyond the capacity of a quantum(-inspired) computer, we evaluate them in the context of decomposition. Experiments suggest that both annealers are effective on problems with small size and simple settings, but lose their utility when facing problems in practical size and settings. Decomposition methods extend the scalability of annealers, but they are still far away from practical use. Based on the experiments and comparison, we discuss the advantages and limitations of quantum(-inspired) annealers, as well as the research directions that may improve the utility and scalability of the these emerging computing technologies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.