Papers
Topics
Authors
Recent
2000 character limit reached

Detecting GAN-generated Images by Orthogonal Training of Multiple CNNs (2203.02246v1)

Published 4 Mar 2022 in cs.CV and cs.AI

Abstract: In the last few years, we have witnessed the rise of a series of deep learning methods to generate synthetic images that look extremely realistic. These techniques prove useful in the movie industry and for artistic purposes. However, they also prove dangerous if used to spread fake news or to generate fake online accounts. For this reason, detecting if an image is an actual photograph or has been synthetically generated is becoming an urgent necessity. This paper proposes a detector of synthetic images based on an ensemble of Convolutional Neural Networks (CNNs). We consider the problem of detecting images generated with techniques not available at training time. This is a common scenario, given that new image generators are published more and more frequently. To solve this issue, we leverage two main ideas: (i) CNNs should provide orthogonal results to better contribute to the ensemble; (ii) original images are better defined than synthetic ones, thus they should be better trusted at testing time. Experiments show that pursuing these two ideas improves the detector accuracy on NVIDIA's newly generated StyleGAN3 images, never used in training.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.