Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting GAN-generated Images by Orthogonal Training of Multiple CNNs (2203.02246v1)

Published 4 Mar 2022 in cs.CV and cs.AI

Abstract: In the last few years, we have witnessed the rise of a series of deep learning methods to generate synthetic images that look extremely realistic. These techniques prove useful in the movie industry and for artistic purposes. However, they also prove dangerous if used to spread fake news or to generate fake online accounts. For this reason, detecting if an image is an actual photograph or has been synthetically generated is becoming an urgent necessity. This paper proposes a detector of synthetic images based on an ensemble of Convolutional Neural Networks (CNNs). We consider the problem of detecting images generated with techniques not available at training time. This is a common scenario, given that new image generators are published more and more frequently. To solve this issue, we leverage two main ideas: (i) CNNs should provide orthogonal results to better contribute to the ensemble; (ii) original images are better defined than synthetic ones, thus they should be better trusted at testing time. Experiments show that pursuing these two ideas improves the detector accuracy on NVIDIA's newly generated StyleGAN3 images, never used in training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Sara Mandelli (24 papers)
  2. Nicolò Bonettini (7 papers)
  3. Paolo Bestagini (61 papers)
  4. Stefano Tubaro (55 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.