Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Voice-Face Homogeneity Tells Deepfake (2203.02195v3)

Published 4 Mar 2022 in cs.CV, cs.AI, and cs.MM

Abstract: Detecting forgery videos is highly desirable due to the abuse of deepfake. Existing detection approaches contribute to exploring the specific artifacts in deepfake videos and fit well on certain data. However, the growing technique on these artifacts keeps challenging the robustness of traditional deepfake detectors. As a result, the development of generalizability of these approaches has reached a blockage. To address this issue, given the empirical results that the identities behind voices and faces are often mismatched in deepfake videos, and the voices and faces have homogeneity to some extent, in this paper, we propose to perform the deepfake detection from an unexplored voice-face matching view. To this end, a voice-face matching method is devised to measure the matching degree of these two. Nevertheless, training on specific deepfake datasets makes the model overfit certain traits of deepfake algorithms. We instead, advocate a method that quickly adapts to untapped forgery, with a pre-training then fine-tuning paradigm. Specifically, we first pre-train the model on a generic audio-visual dataset, followed by the fine-tuning on downstream deepfake data. We conduct extensive experiments over three widely exploited deepfake datasets - DFDC, FakeAVCeleb, and DeepfakeTIMIT. Our method obtains significant performance gains as compared to other state-of-the-art competitors. It is also worth noting that our method already achieves competitive results when fine-tuned on limited deepfake data.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.