Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

GraspARL: Dynamic Grasping via Adversarial Reinforcement Learning (2203.02119v2)

Published 4 Mar 2022 in cs.RO and cs.AI

Abstract: Grasping moving objects, such as goods on a belt or living animals, is an important but challenging task in robotics. Conventional approaches rely on a set of manually defined object motion patterns for training, resulting in poor generalization to unseen object trajectories. In this work, we introduce an adversarial reinforcement learning framework for dynamic grasping, namely GraspARL. To be specific. we formulate the dynamic grasping problem as a 'move-and-grasp' game, where the robot is to pick up the object on the mover and the adversarial mover is to find a path to escape it. Hence, the two agents play a min-max game and are trained by reinforcement learning. In this way, the mover can auto-generate diverse moving trajectories while training. And the robot trained with the adversarial trajectories can generalize to various motion patterns. Empirical results on the simulator and real-world scenario demonstrate the effectiveness of each and good generalization of our method.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.