Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

User-Level Membership Inference Attack against Metric Embedding Learning (2203.02077v2)

Published 4 Mar 2022 in cs.LG, cs.AI, and cs.CR

Abstract: Membership inference (MI) determines if a sample was part of a victim model training set. Recent development of MI attacks focus on record-level membership inference which limits their application in many real-world scenarios. For example, in the person re-identification task, the attacker (or investigator) is interested in determining if a user's images have been used during training or not. However, the exact training images might not be accessible to the attacker. In this paper, we develop a user-level MI attack where the goal is to find if any sample from the target user has been used during training even when no exact training sample is available to the attacker. We focus on metric embedding learning due to its dominance in person re-identification, where user-level MI attack is more sensible. We conduct an extensive evaluation on several datasets and show that our approach achieves high accuracy on user-level MI task.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.