Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Numerical conservation laws of time fractional diffusion PDEs (2203.01966v1)

Published 3 Mar 2022 in math.NA and cs.NA

Abstract: The first part of this paper introduces sufficient conditions to determine conservation laws of diffusion equations of arbitrary fractional order in time. Numerical methods that satisfy a discrete analogue of these conditions have conservation laws that approximate the continuous ones. In the second part of the paper, we propose a method that combines a finite difference method in space with a spectral integrator in time. The time integrator has already been applied in literature to solve time fractional equations with Caputo fractional derivative of order $\alpha\in(0,1)$. It is here generalised to approximate Caputo and Riemann-Liouville fractional derivatives of arbitrary order. We apply the method to subdiffusion and superdiffusion equations with Riemann-Liouville fractional derivative and derive its conservation laws. Finally, we present a range of numerical experiments to show the convergence of the method and its conservation properties.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube