Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Query Processing on Tensor Computation Runtimes (2203.01877v4)

Published 3 Mar 2022 in cs.DB, cs.AI, and cs.LG

Abstract: The huge demand for computation in AI is driving unparalleled investments in hardware and software systems for AI. This leads to an explosion in the number of specialized hardware devices, which are now offered by major cloud vendors. By hiding the low-level complexity through a tensor-based interface, tensor computation runtimes (TCRs) such as PyTorch allow data scientists to efficiently exploit the exciting capabilities offered by the new hardware. In this paper, we explore how database management systems can ride the wave of innovation happening in the AI space. We design, build, and evaluate Tensor Query Processor (TQP): TQP transforms SQL queries into tensor programs and executes them on TCRs. TQP is able to run the full TPC-H benchmark by implementing novel algorithms for relational operators on the tensor routines. At the same time, TQP can support various hardware while only requiring a fraction of the usual development effort. Experiments show that TQP can improve query execution time by up to 10$\times$ over specialized CPU- and GPU-only systems. Finally, TQP can accelerate queries mixing ML predictions and SQL end-to-end, and deliver up to 9$\times$ speedup over CPU baselines.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.