Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic Model Predictive Control using Initial State Optimization (2203.01844v2)

Published 3 Mar 2022 in eess.SY, cs.SY, and math.OC

Abstract: We propose a stochastic MPC scheme using an optimization over the initial state for the predicted trajectory. Considering linear discrete-time systems under unbounded additive stochastic disturbances subject to chance constraints, we use constraint tightening based on probabilistic reachable sets to design the MPC. The scheme avoids the infeasibility issues arising from unbounded disturbances by including the initial state as a decision variable. We show that the stabilizing control scheme can guarantee constraint satisfaction in closed loop, assuming unimodal disturbances. In addition to illustrating these guarantees, the numerical example indicates further advantages of optimizing over the initial state for the transient behavior.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube