Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Neural Graph Matching for Pre-training Graph Neural Networks (2203.01597v1)

Published 3 Mar 2022 in cs.LG

Abstract: Recently, graph neural networks (GNNs) have been shown powerful capacity at modeling structural data. However, when adapted to downstream tasks, it usually requires abundant task-specific labeled data, which can be extremely scarce in practice. A promising solution to data scarcity is to pre-train a transferable and expressive GNN model on large amounts of unlabeled graphs or coarse-grained labeled graphs. Then the pre-trained GNN is fine-tuned on downstream datasets with task-specific fine-grained labels. In this paper, we present a novel Graph Matching based GNN Pre-Training framework, called GMPT. Focusing on a pair of graphs, we propose to learn structural correspondences between them via neural graph matching, consisting of both intra-graph message passing and inter-graph message passing. In this way, we can learn adaptive representations for a given graph when paired with different graphs, and both node- and graph-level characteristics are naturally considered in a single pre-training task. The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training. We further propose an approximate contrastive training strategy to significantly reduce time/memory consumption. Extensive experiments on multi-domain, out-of-distribution benchmarks have demonstrated the effectiveness of our approach. The code is available at: https://github.com/RUCAIBox/GMPT.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.