QaNER: Prompting Question Answering Models for Few-shot Named Entity Recognition (2203.01543v2)
Abstract: Recently, prompt-based learning for pre-trained LLMs has succeeded in few-shot Named Entity Recognition (NER) by exploiting prompts as task guidance to increase label efficiency. However, previous prompt-based methods for few-shot NER have limitations such as a higher computational complexity, poor zero-shot ability, requiring manual prompt engineering, or lack of prompt robustness. In this work, we address these shortcomings by proposing a new prompt-based learning NER method with Question Answering (QA), called QaNER. Our approach includes 1) a refined strategy for converting NER problems into the QA formulation; 2) NER prompt generation for QA models; 3) prompt-based tuning with QA models on a few annotated NER examples; 4) zero-shot NER by prompting the QA model. Comparing the proposed approach with previous methods, QaNER is faster at inference, insensitive to the prompt quality, and robust to hyper-parameters, as well as demonstrating significantly better low-resource performance and zero-shot capability.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.