Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Top-N Recommendation Algorithms: A Quest for the State-of-the-Art (2203.01155v2)

Published 2 Mar 2022 in cs.IR

Abstract: Research on recommender systems algorithms, like other areas of applied machine learning, is largely dominated by efforts to improve the state-of-the-art, typically in terms of accuracy measures. Several recent research works however indicate that the reported improvements over the years sometimes "don't add up", and that methods that were published several years ago often outperform the latest models when evaluated independently. Different factors contribute to this phenomenon, including that some researchers probably often only fine-tune their own models but not the baselines. In this paper, we report the outcomes of an in-depth, systematic, and reproducible comparison of ten collaborative filtering algorithms - covering both traditional and neural models - on several common performance measures on three datasets which are frequently used for evaluation in the recent literature. Our results show that there is no consistent winner across datasets and metrics for the examined top-n recommendation task. Moreover, we find that for none of the accuracy measurements any of the considered neural models led to the best performance. Regarding the performance ranking of algorithms across the measurements, we found that linear models, nearest-neighbor methods, and traditional matrix factorization consistently perform well for the evaluated modest-sized, but commonly-used datasets. Our work shall therefore serve as a guideline for researchers regarding existing baselines to consider in future performance comparisons. Moreover, by providing a set of fine-tuned baseline models for different datasets, we hope that our work helps to establish a common understanding of the state-of-the-art for top-n recommendation tasks.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.