Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Top-N Recommendation Algorithms: A Quest for the State-of-the-Art (2203.01155v2)

Published 2 Mar 2022 in cs.IR

Abstract: Research on recommender systems algorithms, like other areas of applied machine learning, is largely dominated by efforts to improve the state-of-the-art, typically in terms of accuracy measures. Several recent research works however indicate that the reported improvements over the years sometimes "don't add up", and that methods that were published several years ago often outperform the latest models when evaluated independently. Different factors contribute to this phenomenon, including that some researchers probably often only fine-tune their own models but not the baselines. In this paper, we report the outcomes of an in-depth, systematic, and reproducible comparison of ten collaborative filtering algorithms - covering both traditional and neural models - on several common performance measures on three datasets which are frequently used for evaluation in the recent literature. Our results show that there is no consistent winner across datasets and metrics for the examined top-n recommendation task. Moreover, we find that for none of the accuracy measurements any of the considered neural models led to the best performance. Regarding the performance ranking of algorithms across the measurements, we found that linear models, nearest-neighbor methods, and traditional matrix factorization consistently perform well for the evaluated modest-sized, but commonly-used datasets. Our work shall therefore serve as a guideline for researchers regarding existing baselines to consider in future performance comparisons. Moreover, by providing a set of fine-tuned baseline models for different datasets, we hope that our work helps to establish a common understanding of the state-of-the-art for top-n recommendation tasks.

Citations (52)

Summary

We haven't generated a summary for this paper yet.