Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Recursively feasible stochastic predictive control using an interpolating initial state constraint -- extended version (2203.01073v2)

Published 2 Mar 2022 in eess.SY, cs.SY, and math.OC

Abstract: We present a stochastic model predictive control (SMPC) framework for linear systems subject to possibly unbounded disturbances. State of the art SMPC approaches with closed-loop chance constraint satisfaction recursively initialize the nominal state based on the previously predicted nominal state or possibly the measured state under some case distinction. We improve these initialization strategies by allowing for a continuous optimization over the nominal initial state in an interpolation of these two extremes. The resulting SMPC scheme can be implemented as one standard quadratic program and is more flexible compared to state-of-the-art initialization strategies. As the main technical contribution, we show that the proposed SMPC framework also ensures closed-loop satisfaction of chance constraints and suitable performance bounds.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.