Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

UAV-Aided Decentralized Learning over Mesh Networks (2203.01008v2)

Published 2 Mar 2022 in cs.IT, cs.LG, eess.SP, and math.IT

Abstract: Decentralized learning empowers wireless network devices to collaboratively train a ML model relying solely on device-to-device (D2D) communication. It is known that the convergence speed of decentralized optimization algorithms severely depends on the degree of the network connectivity, with denser network topologies leading to shorter convergence time. Consequently, the local connectivity of real world mesh networks, due to the limited communication range of its wireless nodes, undermines the efficiency of decentralized learning protocols, rendering them potentially impracticable. In this work we investigate the role of an unmanned aerial vehicle (UAV), used as flying relay, in facilitating decentralized learning procedures in such challenging conditions. We propose an optimized UAV trajectory, that is defined as a sequence of waypoints that the UAV visits sequentially in order to transfer intelligence across sparsely connected group of users. We then provide a series of experiments highlighting the essential role of UAVs in the context of decentralized learning over mesh networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube