Papers
Topics
Authors
Recent
2000 character limit reached

Neuro-Symbolic Verification of Deep Neural Networks (2203.00938v1)

Published 2 Mar 2022 in cs.AI, cs.LG, and cs.LO

Abstract: Formal verification has emerged as a powerful approach to ensure the safety and reliability of deep neural networks. However, current verification tools are limited to only a handful of properties that can be expressed as first-order constraints over the inputs and output of a network. While adversarial robustness and fairness fall under this category, many real-world properties (e.g., "an autonomous vehicle has to stop in front of a stop sign") remain outside the scope of existing verification technology. To mitigate this severe practical restriction, we introduce a novel framework for verifying neural networks, named neuro-symbolic verification. The key idea is to use neural networks as part of the otherwise logical specification, enabling the verification of a wide variety of complex, real-world properties, including the one above. Moreover, we demonstrate how neuro-symbolic verification can be implemented on top of existing verification infrastructure for neural networks, making our framework easily accessible to researchers and practitioners alike.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.