Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Object Relations with Graph Neural Networks for Target-Driven Grasping in Dense Clutter (2203.00875v1)

Published 2 Mar 2022 in cs.RO

Abstract: Robots in the real world frequently come across identical objects in dense clutter. When evaluating grasp poses in these scenarios, a target-driven grasping system requires knowledge of spatial relations between scene objects (e.g., proximity, adjacency, and occlusions). To efficiently complete this task, we propose a target-driven grasping system that simultaneously considers object relations and predicts 6-DoF grasp poses. A densely cluttered scene is first formulated as a grasp graph with nodes representing object geometries in the grasp coordinate frame and edges indicating spatial relations between the objects. We design a Grasp Graph Neural Network (G2N2) that evaluates the grasp graph and finds the most feasible 6-DoF grasp pose for a target object. Additionally, we develop a shape completion-assisted grasp pose sampling method that improves sample quality and consequently grasping efficiency. We compare our method against several baselines in both simulated and real settings. In real-world experiments with novel objects, our approach achieves a 77.78% grasping accuracy in densely cluttered scenarios, surpassing the best-performing baseline by more than 15%. Supplementary material is available at https://sites.google.com/umn.edu/graph-grasping.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.