Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours (2203.00854v3)

Published 2 Mar 2022 in cs.LG, cs.AI, cs.DC, and q-bio.QM

Abstract: Protein structure prediction helps to understand gene translation and protein function, which is of growing interest and importance in structural biology. The AlphaFold model, which used transformer architecture to achieve atomic-level accuracy in protein structure prediction, was a significant breakthrough. However, training and inference of the AlphaFold model are challenging due to its high computation and memory cost. In this work, we present FastFold, an efficient implementation of AlphaFold for both training and inference. We propose Dynamic Axial Parallelism and Duality Async Operations to improve the scaling efficiency of model parallelism. Besides, AutoChunk is proposed to reduce memory cost by over 80% during inference by automatically determining the chunk strategy. Experimental results show that FastFold reduces overall training time from 11 days to 67 hours and achieves 7.5X - 9.5X speedup for long-sequence inference. Furthermore, we scale FastFold to 512 GPUs and achieve an aggregate throughput of 6.02 PetaFLOP/s with 90.1% parallel efficiency.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.