Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Asymptotic Normality of Log Likelihood Ratio and Fundamental Limit of the Weak Detection for Spiked Wigner Matrices (2203.00821v4)

Published 2 Mar 2022 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: We consider the problem of detecting the presence of a signal in a rank-one spiked Wigner model. For general non-Gaussian noise, assuming that the signal is drawn from the Rademacher prior, we prove that the log likelihood ratio (LR) of the spiked model against the null model converges to a Gaussian when the signal-to-noise ratio is below a certain threshold. The threshold is optimal in the sense that the reliable detection is possible by a transformed principal component analysis (PCA) above it. From the mean and the variance of the limiting Gaussian for the log-LR, we compute the limit of the sum of the Type-I error and the Type-II error of the likelihood ratio test. We also prove similar results for a rank-one spiked IID model where the noise is asymmetric but the signal is symmetric.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: