Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Accelerated Stochastic Algorithm for Solving the Optimal Transport Problem (2203.00813v3)

Published 2 Mar 2022 in stat.ML, cs.DS, and math.OC

Abstract: A primal-dual accelerated stochastic gradient descent with variance reduction algorithm (PDASGD) is proposed to solve linear-constrained optimization problems. PDASGD could be applied to solve the discrete optimal transport (OT) problem and enjoys the best-known computational complexity -- $\widetilde{\mathcal{O}}(n2/\epsilon)$, where $n$ is the number of atoms, and $\epsilon>0$ is the accuracy. In the literature, some primal-dual accelerated first-order algorithms, e.g., APDAGD, have been proposed and have the order of $\widetilde{\mathcal{O}}(n{2.5}/\epsilon)$ for solving the OT problem. To understand why our proposed algorithm could improve the rate by a factor of $\widetilde{\mathcal{O}}(\sqrt{n})$, the conditions under which our stochastic algorithm has a lower order of computational complexity for solving linear-constrained optimization problems are discussed. It is demonstrated that the OT problem could satisfy the aforementioned conditions. Numerical experiments demonstrate superior practical performances of the proposed PDASGD algorithm for solving the OT problem.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube