Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Accelerated Stochastic Algorithm for Solving the Optimal Transport Problem (2203.00813v3)

Published 2 Mar 2022 in stat.ML, cs.DS, and math.OC

Abstract: A primal-dual accelerated stochastic gradient descent with variance reduction algorithm (PDASGD) is proposed to solve linear-constrained optimization problems. PDASGD could be applied to solve the discrete optimal transport (OT) problem and enjoys the best-known computational complexity -- $\widetilde{\mathcal{O}}(n2/\epsilon)$, where $n$ is the number of atoms, and $\epsilon>0$ is the accuracy. In the literature, some primal-dual accelerated first-order algorithms, e.g., APDAGD, have been proposed and have the order of $\widetilde{\mathcal{O}}(n{2.5}/\epsilon)$ for solving the OT problem. To understand why our proposed algorithm could improve the rate by a factor of $\widetilde{\mathcal{O}}(\sqrt{n})$, the conditions under which our stochastic algorithm has a lower order of computational complexity for solving linear-constrained optimization problems are discussed. It is demonstrated that the OT problem could satisfy the aforementioned conditions. Numerical experiments demonstrate superior practical performances of the proposed PDASGD algorithm for solving the OT problem.

Citations (11)

Summary

We haven't generated a summary for this paper yet.