Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The quantum low-rank approximation problem (2203.00811v2)

Published 2 Mar 2022 in quant-ph and cs.LG

Abstract: We consider a quantum version of the famous low-rank approximation problem. Specifically, we consider the distance $D(\rho,\sigma)$ between two normalized quantum states, $\rho$ and $\sigma$, where the rank of $\sigma$ is constrained to be at most $R$. For both the trace distance and Hilbert-Schmidt distance, we analytically solve for the optimal state $\sigma$ that minimizes this distance. For the Hilbert-Schmidt distance, the unique optimal state is $\sigma = \tau_R +N_R$, where $\tau_R = \Pi_R \rho \Pi_R$ is given by projecting $\rho$ onto its $R$ principal components with projector $\Pi_R$, and $N_R$ is a normalization factor given by $N_R = \frac{1- \text{Tr}(\tau_R)}{R}\Pi_R$. For the trace distance, this state is also optimal but not uniquely optimal, and we provide the full set of states that are optimal. We briefly discuss how our results have application for performing principal component analysis (PCA) via variational optimization on quantum computers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nic Ezzell (5 papers)
  2. Zoƫ Holmes (45 papers)
  3. Patrick J. Coles (96 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.