Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Code Smells in Machine Learning Systems (2203.00803v1)

Published 2 Mar 2022 in cs.SE and cs.LG

Abstract: As Deep learning (DL) systems continuously evolve and grow, assuring their quality becomes an important yet challenging task. Compared to non-DL systems, DL systems have more complex team compositions and heavier data dependency. These inherent characteristics would potentially cause DL systems to be more vulnerable to bugs and, in the long run, to maintenance issues. Code smells are empirically tested as efficient indicators of non-DL systems. Therefore, we took a step forward into identifying code smells, and understanding their impact on maintenance in this comprehensive study. This is the first study on investigating code smells in the context of DL software systems, which helps researchers and practitioners to get a first look at what kind of maintenance modification made and what code smells developers have been dealing with. Our paper has three major contributions. First, we comprehensively investigated the maintenance modifications that have been made by DL developers via studying the evolution of DL systems, and we identified nine frequently occurred maintenance-related modification categories in DL systems. Second, we summarized five code smells in DL systems. Third, we validated the prevalence, and the impact of our newly identified code smells through a mixture of qualitative and quantitative analysis. We found that our newly identified code smells are prevalent and impactful on the maintenance of DL systems from the developer's perspective.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube