Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tricks and Plugins to GBM on Images and Sequences (2203.00761v1)

Published 1 Mar 2022 in cs.LG and cs.CV

Abstract: Convolutional neural networks (CNNs) and transformers, which are composed of multiple processing layers and blocks to learn the representations of data with multiple abstract levels, are the most successful machine learning models in recent years. However, millions of parameters and many blocks make them difficult to be trained, and sometimes several days or weeks are required to find an ideal architecture or tune the parameters. Within this paper, we propose a new algorithm for boosting Deep Convolutional Neural Networks (BoostCNN) to combine the merits of dynamic feature selection and BoostCNN, and another new family of algorithms combining boosting and transformers. To learn these new models, we introduce subgrid selection and importance sampling strategies and propose a set of algorithms to incorporate boosting weights into a deep learning architecture based on a least squares objective function. These algorithms not only reduce the required manual effort for finding an appropriate network architecture but also result in superior performance and lower running time. Experiments show that the proposed methods outperform benchmarks on several fine-grained classification tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.