Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

3D Skeleton-based Human Motion Prediction with Manifold-Aware GAN (2203.00736v1)

Published 1 Mar 2022 in cs.CV

Abstract: In this work we propose a novel solution for 3D skeleton-based human motion prediction. The objective of this task consists in forecasting future human poses based on a prior skeleton pose sequence. This involves solving two main challenges still present in recent literature; (1) discontinuity of the predicted motion which results in unrealistic motions and (2) performance deterioration in long-term horizons resulting from error accumulation across time. We tackle these issues by using a compact manifold-valued representation of 3D human skeleton motion. Specifically, we model the temporal evolution of the 3D poses as trajectory, what allows us to map human motions to single points on a sphere manifold. Using such a compact representation avoids error accumulation and provides robust representation for long-term prediction while ensuring the smoothness and the coherence of the whole motion. To learn these non-Euclidean representations, we build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion through different losses. Experiments have been conducted on CMU MoCap and Human 3.6M datasets and demonstrate the superiority of our approach over the state-of-the-art both in short and long term horizons. The smoothness of the generated motion is highlighted in the qualitative results.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.