Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Effects of Algorithmic vs. Community Label on Perceived Accuracy of Hyper-partisan Misinformation (2203.00710v2)

Published 1 Mar 2022 in cs.HC and cs.SI

Abstract: Hyper-partisan misinformation has become a major public concern. In order to examine what type of misinformation label can mitigate hyper-partisan misinformation sharing on social media, we conducted a 4 (label type: algorithm, community, third-party fact-checker, and no label) X 2 (post ideology: liberal vs. conservative) between-subjects online experiment (N = 1,677) in the context of COVID-19 health information. The results suggest that for liberal users, all labels reduced the perceived accuracy and believability of fake posts regardless of the posts' ideology. In contrast, for conservative users, the efficacy of the labels depended on whether the posts were ideologically consistent: algorithmic labels were more effective in reducing the perceived accuracy and believability of fake conservative posts compared to community labels, whereas all labels were effective in reducing their belief in liberal posts. Our results shed light on the differing effects of various misinformation labels dependent on people's political ideology.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.