Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Algorithm Design and Integration for a Robotic Apple Harvesting System (2203.00582v2)

Published 1 Mar 2022 in cs.RO, cs.SY, and eess.SY

Abstract: Due to labor shortage and rising labor cost for the apple industry, there is an urgent need for the development of robotic systems to efficiently and autonomously harvest apples. In this paper, we present a system overview and algorithm design of our recently developed robotic apple harvester prototype. Our robotic system is enabled by the close integration of several core modules, including visual perception, planning, and control. This paper covers the main methods and advancements in deep learning-based multi-view fruit detection and localization, unified picking and dropping planning, and dexterous manipulation control. Indoor and field experiments were conducted to evaluate the performance of the developed system, which achieved an average picking rate of 3.6 seconds per apple. This is a significant improvement over other reported apple harvesting robots with a picking rate in the range of 7-10 seconds per apple. The current prototype shows promising performance towards further development of efficient and automated apple harvesting technology. Finally, limitations of the current system and future work are discussed.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube