Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP (2203.00386v1)

Published 1 Mar 2022 in cs.CV

Abstract: Training a text-to-image generator in the general domain (e.g., Dall.e, CogView) requires huge amounts of paired text-image data, which is too expensive to collect. In this paper, we propose a self-supervised scheme named as CLIP-GEN for general text-to-image generation with the language-image priors extracted with a pre-trained CLIP model. In our approach, we only require a set of unlabeled images in the general domain to train a text-to-image generator. Specifically, given an image without text labels, we first extract the embedding of the image in the united language-vision embedding space with the image encoder of CLIP. Next, we convert the image into a sequence of discrete tokens in the VQGAN codebook space (the VQGAN model can be trained with the unlabeled image dataset in hand). Finally, we train an autoregressive transformer that maps the image tokens from its unified language-vision representation. Once trained, the transformer can generate coherent image tokens based on the text embedding extracted from the text encoder of CLIP upon an input text. Such a strategy enables us to train a strong and general text-to-image generator with large text-free image dataset such as ImageNet. Qualitative and quantitative evaluations verify that our method significantly outperforms optimization-based text-to-image methods in terms of image quality while not compromising the text-image matching. Our method can even achieve comparable performance as flagship supervised models like CogView.

Citations (69)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube