Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Performance of Automated Essay Scoring by using back-translation essays and adjusted scores (2203.00354v2)

Published 1 Mar 2022 in cs.CL

Abstract: Automated essay scoring plays an important role in judging students' language abilities in education. Traditional approaches use handcrafted features to score and are time-consuming and complicated. Recently, neural network approaches have improved performance without any feature engineering. Unlike other natural language processing tasks, only a small number of datasets are publicly available for automated essay scoring, and the size of the dataset is not sufficiently large. Considering that the performance of a neural network is closely related to the size of the dataset, the lack of data limits the performance improvement of the automated essay scoring model. In this paper, we proposed a method to increase the number of essay-score pairs using back-translation and score adjustment and applied it to the Automated Student Assessment Prize dataset for augmentation. We evaluated the effectiveness of the augmented data using models from prior work. In addition, performance was evaluated in a model using long short-term memory, which is widely used for automated essay scoring. The performance of the models was improved by using augmented data to train the models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.