Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Unit Profit Knapsack with Untrusted Predictions (2203.00285v1)

Published 1 Mar 2022 in cs.DS

Abstract: A variant of the online knapsack problem is considered in the settings of trusted and untrusted predictions. In Unit Profit Knapsack, the items have unit profit, and it is easy to find an optimal solution offline: Pack as many of the smallest items as possible into the knapsack. For Online Unit Profit Knapsack, the competitive ratio is unbounded. In contrast, previous work on online algorithms with untrusted predictions generally studied problems where an online algorithm with a constant competitive ratio is known. The prediction, possibly obtained from a machine learning source, that our algorithm uses is the average size of those smallest items that fit in the knapsack. For the prediction error in this hard online problem, we use the ratio $r=\frac{a}{\hat{a}}$ where $a$ is the actual value for this average size and $\hat{a}$ is the prediction. The algorithm presented achieves a competitive ratio of $\frac{1}{2r}$ for $r\geq 1$ and $\frac{r}{2}$ for $r\leq 1$. Using an adversary technique, we show that this is optimal in some sense, giving a trade-off in the competitive ratio attainable for different values of $r$. Note that the result for accurate advice, $r=1$, is only $\frac{1}{2}$, but we show that no algorithm knowing the value $a$ can achieve a competitive ratio better than $\frac{e-1}{e}\approx 0.6321$ and present an algorithm with a matching upper bound. We also show that this latter algorithm attains a competitive ratio of $r\frac{e-1}{e}$ for $r \leq 1$ and $\frac{e-r}{e}$ for $1 \leq r < e$, and no algorithm can be better for both $r<1$ and $1\leq r<e$.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube