Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Structure Extraction in Task-Oriented Dialogues with Slot Clustering (2203.00073v3)

Published 28 Feb 2022 in cs.CL and cs.AI

Abstract: Extracting structure information from dialogue data can help us better understand user and system behaviors. In task-oriented dialogues, dialogue structure has often been considered as transition graphs among dialogue states. However, annotating dialogue states manually is expensive and time-consuming. In this paper, we propose a simple yet effective approach for structure extraction in task-oriented dialogues. We first detect and cluster possible slot tokens with a pre-trained model to approximate dialogue ontology for a target domain. Then we track the status of each identified token group and derive a state transition structure. Empirical results show that our approach outperforms unsupervised baseline models by far in dialogue structure extraction. In addition, we show that data augmentation based on extracted structures enriches the surface formats of training data and can achieve a significant performance boost in dialogue response generation.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.