Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Domain Knowledge-Informed Self-Supervised Representations for Workout Form Assessment (2202.14019v2)

Published 28 Feb 2022 in cs.CV, cs.AI, cs.HC, and cs.LG

Abstract: Maintaining proper form while exercising is important for preventing injuries and maximizing muscle mass gains. Detecting errors in workout form naturally requires estimating human's body pose. However, off-the-shelf pose estimators struggle to perform well on the videos recorded in gym scenarios due to factors such as camera angles, occlusion from gym equipment, illumination, and clothing. To aggravate the problem, the errors to be detected in the workouts are very subtle. To that end, we propose to learn exercise-oriented image and video representations from unlabeled samples such that a small dataset annotated by experts suffices for supervised error detection. In particular, our domain knowledge-informed self-supervised approaches (pose contrastive learning and motion disentangling) exploit the harmonic motion of the exercise actions, and capitalize on the large variances in camera angles, clothes, and illumination to learn powerful representations. To facilitate our self-supervised pretraining, and supervised finetuning, we curated a new exercise dataset, \emph{Fitness-AQA} (\url{https://github.com/ParitoshParmar/Fitness-AQA}), comprising of three exercises: BackSquat, BarbellRow, and OverheadPress. It has been annotated by expert trainers for multiple crucial and typically occurring exercise errors. Experimental results show that our self-supervised representations outperform off-the-shelf 2D- and 3D-pose estimators and several other baselines. We also show that our approaches can be applied to other domains/tasks such as pose estimation and dive quality assessment.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.