Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

One-shot Ultra-high-Resolution Generative Adversarial Network That Synthesizes 16K Images On A Single GPU (2202.13799v3)

Published 28 Feb 2022 in cs.CV, cs.LG, and eess.IV

Abstract: We propose a one-shot ultra-high-resolution generative adversarial network (OUR-GAN) framework that generates non-repetitive 16K (16, 384 x 8, 640) images from a single training image and is trainable on a single consumer GPU. OUR-GAN generates an initial image that is visually plausible and varied in shape at low resolution, and then gradually increases the resolution by adding detail through super-resolution. Since OUR-GAN learns from a real ultra-high-resolution (UHR) image, it can synthesize large shapes with fine details and long-range coherence, which is difficult to achieve with conventional generative models that rely on the patch distribution learned from relatively small images. OUR-GAN can synthesize high-quality 16K images with 12.5 GB of GPU memory and 4K images with only 4.29 GB as it synthesizes a UHR image part by part through seamless subregion-wise super-resolution. Additionally, OUR-GAN improves visual coherence while maintaining diversity by applying vertical positional convolution. In experiments on the ST4K and RAISE datasets, OUR-GAN exhibited improved fidelity, visual coherency, and diversity compared with the baseline one-shot synthesis models. To the best of our knowledge, OUR-GAN is the first one-shot image synthesizer that generates non-repetitive UHR images on a single consumer GPU. The synthesized image samples are presented at https://our-gan.github.io.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.