Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Are Big Recommendation Models Fair to Cold Users? (2202.13607v1)

Published 28 Feb 2022 in cs.IR

Abstract: Big models are widely used by online recommender systems to boost recommendation performance. They are usually learned on historical user behavior data to infer user interest and predict future user behaviors (e.g., clicks). In fact, the behaviors of heavy users with more historical behaviors can usually provide richer clues than cold users in interest modeling and future behavior prediction. Big models may favor heavy users by learning more from their behavior patterns and bring unfairness to cold users. In this paper, we study whether big recommendation models are fair to cold users. We empirically demonstrate that optimizing the overall performance of big recommendation models may lead to unfairness to cold users in terms of performance degradation. To solve this problem, we propose a BigFair method based on self-distillation, which uses the model predictions on original user data as a teacher to regularize predictions on augmented data with randomly dropped user behaviors, which can encourage the model to fairly capture interest distributions of heavy and cold users. Experiments on two datasets show that BigFair can effectively improve the performance fairness of big recommendation models on cold users without harming the performance on heavy users.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.