Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalizable task representation learning from human demonstration videos: a geometric approach (2202.13604v1)

Published 28 Feb 2022 in cs.RO and cs.AI

Abstract: We study the problem of generalizable task learning from human demonstration videos without extra training on the robot or pre-recorded robot motions. Given a set of human demonstration videos showing a task with different objects/tools (categorical objects), we aim to learn a representation of visual observation that generalizes to categorical objects and enables efficient controller design. We propose to introduce a geometric task structure to the representation learning problem that geometrically encodes the task specification from human demonstration videos, and that enables generalization by building task specification correspondence between categorical objects. Specifically, we propose CoVGS-IL, which uses a graph-structured task function to learn task representations under structural constraints. Our method enables task generalization by selecting geometric features from different objects whose inner connection relationships define the same task in geometric constraints. The learned task representation is then transferred to a robot controller using uncalibrated visual servoing (UVS); thus, the need for extra robot training or pre-recorded robot motions is removed.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.